This workshop has been deprecated and archived. The new Amazon EKS Workshop is now available at www.eksworkshop.com.
Running applications on the serverless compute engine AWS Fargate, makes it easy for you to focus on deliverying business values, as it removes the need to provision, configure autoscaling, and manage the server.
Before we schedule a serverless EMR job on Amazon EKS, a Fargate profile is needed, that specifies which of your Spark pods should use Fargate when they are launched. For more information, see AWS Fargate profile and our previous lab Creating a Fargate Profile.
Add your Fargate profile to EKS by the following command:
eksctl create fargateprofile --cluster eksworkshop-eksctl --name emr \
--namespace spark --labels type=etl
The labels
setting provides your application a way to target a particular group of compute resources on EKS.
To ensure your job is picked up by Fargate not by the managed nodegroup on EC2, tag your Spark application by the same etl
label.
The configuration looks like this:
--conf spark.kubernetes.driver.label.type=etl
--conf spark.kubernetes.executor.label.type=etl
The sample job we will submit reads a public Amazon customer Reviews Dataset (~ 50GB), then counts the total number of words in reviews.
Firstly, setup a permission for data source and target.
cat <<EoF > review-data-policy.json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListObject"
],
"Resource": [
"arn:aws:s3:::amazon-reviews-pds/parquet/*"
]
},
{
"Effect": "Allow",
"Action": [
"s3:DeleteObject"
],
"Resource": [
"arn:aws:s3:::${s3DemoBucket:5}/output/*"
]
}]
}
EoF
aws iam put-role-policy --role-name EMRContainers-JobExecutionRole --policy-name review-data-access --policy-document file://review-data-policy.json
Secondly, upload the application code to S3.
# create a pySpark job
cat << EOF >wordcount.py
import sys
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('Amazon reviews word count').getOrCreate()
df = spark.read.parquet("s3://amazon-reviews-pds/parquet/")
df.selectExpr("explode(split(lower(review_body), ' ')) as words").groupBy("words").count().write.mode("overwrite").parquet(sys.argv[1])
exit()
EOF
# upload the script
aws s3 cp wordcount.py ${s3DemoBucket}
Next, get existing EMR resources.
export VIRTUAL_CLUSTER_ID=$(aws emr-containers list-virtual-clusters --query "virtualClusters[?state=='RUNNING'].id" --output text)
export EMR_ROLE_ARN=$(aws iam get-role --role-name EMRContainers-JobExecutionRole --query Role.Arn --output text)
Finally, start a serverless EMR job on EKS
aws emr-containers start-job-run \
--virtual-cluster-id $VIRTUAL_CLUSTER_ID \
--name word_count \
--execution-role-arn $EMR_ROLE_ARN \
--release-label emr-6.2.0-latest \
--job-driver '{
"sparkSubmitJobDriver": {
"entryPoint": "'$s3DemoBucket'/wordcount.py",
"entryPointArguments":["'$s3DemoBucket'/output/"],
"sparkSubmitParameters": "--conf spark.kubernetes.driver.label.type=etl --conf spark.kubernetes.executor.label.type=etl --conf spark.executor.instances=8 --conf spark.executor.memory=2G --conf spark.driver.cores=1 --conf spark.executor.cores=3"}}' \
--configuration-overrides '{
"applicationConfiguration": [{
"classification": "spark-defaults",
"properties": {"spark.kubernetes.allocation.batch.size": "8"}
}],
"monitoringConfiguration": {
"s3MonitoringConfiguration": {
"logUri": "'${s3DemoBucket}'/fargate-logs/"}}
}'